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Abstract

The e�ects of an interface of variable sti�ness joining two elastic half-planes have been investigated under the

hypothesis that the load is constituted by two equals and opposites concentrate forces applied at a certain distance
from the interface. The integro-di�erential equation governing the problem has been determined by superposition
principle and making use of the classical solution for concentrate force in an elastic plane. By applying the complex

variable methods and the results of Muskhelishvili, the problem is reduced to that of two ordinary di�erential
equations which have been easily integrated. The closed-form solution has been obtained for an arbitrary
distribution of sti�ness and without restrictions on the position of the loads. Successively, the speci®c cases of a
constant and parabolic distribution of sti�ness have been discussed in detail, and it has been shown how the general

solution can be simpli®ed in these examples. These cases deserve an interest in practical applications, the former
because permits to compute the distribution of interface stress, the latter because allows to detect the e�ects of the
lost of interface sti�ness due, for example, to a damage or to a defect. The proposed solution can be used as a

Green function to solve problems with arbitrary, but symmetric, distributions of loads. 7 2000 Elsevier Science Ltd.
All rights reserved.

1. Introduction

Over the last few years, it has been understood that the interfaces between solids play a relevant role

in determining the properties of composite bodies. Usually, the stresses are continuous across the

interface, while the displacements may be continuous or discontinuous. In the former case the interface

is called strong, whereas in the latter case it is called weak.

Several interfaces can be classi®ed as weak: the friction interfaces, the plastic interfaces, and so on.

There also exist elastic weak interfaces, sometimes called spring-layer models, which assume that the
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stresses are functions of the gap of the displacements. In the framework of linear elasticity, this relation
can be expressed in the form

tn � KDu �1�

where tn and Du are the interface stresses and jump of displacements, respectively, and where the tensor
K represents the sti�ness of the interface. It depends on the junction properties, and in the case of an
interface made of a thin layer of a soft adhesive it is given by (Geymonat et al., 1998)

K � 1

d

E

2�1� n�

2664
1 0 0
0 1 0

0 0 2
1ÿ n
1ÿ 2n

3775, �2�

where d, E and n are the thickness, the Young modulus and the Poisson coe�cient of the adhesive,
respectively. Eq. (2) holds in the case of a ¯at, homogeneous and isotropic adhesive belonging to the
(x1, x2) plane, but more general expressions of K are reported in (Geymonat et al., 1998).

The model (1) has been deeply studied in mathematical (Suquet, 1988; Gangho�er et al., 1997;
Geymonat et al., 1998) and technical literature. The model was initially developed to characterize the
behavior of adhesives (Goland and Reissner, 1944; Gilibert and Rigolot, 1979; Klarbring, 1991; Adams
et al., 1997), but it is widely used in di�erent branches of engineering. For example, it has been
employed by Mal and Bose (1974), Lene and Leguillon (1982), Benveniste (1985), Achenbach and Zhu
(1989, 1990), Hashin (1990, 1992), and by Lipton and Vernescu (1995) in homogenization problems. In
particular, it is used to determine the equivalent elastic coe�cients of a ®ber-reinforced composite with
®bers weakly bonded to the surrounding matrix.

In buckling delamination, the expression (1) has been used by Kanninen (1973), Anastasiadis and
Simitses (1991), Suo et al. (1992), Bigoni et al. (1997), and Wang et al. (1995), while Walton and
Weitsman (1984), Rose (1987), Movchan and Willis (1993, 1996) have adopted a weak interface to
characterize the bridging e�ect of ®bers in the cracking of ceramic composites. The problem of an elastic
inclusion weakly bonded to a surrounding elastic matrix, on the other hand, has been considered by
Bigoni et al. (1998), Gao (1995), and Zhong and Meguid (1997). Finally, it is worth mentioning that the
classical `Winkler-type' soil (Winkler, 1867) can be considered as a weak interface between the
foundation and the ground.

All cited works reside on the basic hypothesis that K is constant along the interface. Although usually
this is a realistic approximation, it does not permit to study some cases of practical interest where the
interface is not homogeneous. For example, it is well known that the presence of defects strongly
in¯uences the mechanical behavior of the interfaces. The disuniformity of K can also be required to
ful®ll some speci®c technical requirements or, in the opposite case, can be appositely designed to
improve the performances of the connection.

The aim of this paper is to consider the case of two elastic bodies joined along their common
boundary by a weak interface of non-constant sti�ness.

If the two bodies O+ and Oÿ are su�ciently large with respect to the extent of the interface, in the
®rst approximation it is possible to consider the case of two half-spaces connected along their common
planar boundary S (Fig. 1). Some further simplifying hypotheses are used in this work: it is assumed
that the problem can be treated in the context of plane elasticity (plane strain or plane stress, see Love,
1926) and that O+ and Oÿ are identical, homogeneous and isotropic elastic bodies characterized by the
shear modulus m and by the Poisson coe�cient n. The interface, on the other hand, is orthotropic with
normal and tangential sti�ness kN (x ) and kT (x ), respectively. These hypotheses permit closed-form
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expressions of the solution of the elastic problem through the use of the classical complex variable
method (Muskhelishvili, 1953).

As concerns the loading conditions, we observe that there are two kinds of loads: those applied far
from the interface, and those applied in its neighborhood. In the former case it is only the value of the
resultant of the applied forces which determines the interface stresses and gap of displacements. In the
latter case, on the other hand, the actual distribution of loads is important in determining the interface
behavior. The ®rst case has been considered in Lenci (1998) by assuming constant stress applied at
in®nity, while the second case is addressed in this paper. More speci®cally, we consider the cases of two
equally and opposed concentrated forces, perpendicular (Fig. 1(a)) and parallel (Fig. 1(b)) to S, applied

Fig. 1. Two semi-in®nite planar elastic bodies joined by a weak interface of non-constant sti�ness and subjected to two equal and

opposite forces (a) perpendicular and (b) parallel to the interface.
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at a given distance a from the interface. These solutions can be used as Green functions to obtain the
solution for an arbitrary, but symmetric, distribution of loads.

We wish to emphasize that, although developed with the aim of treating loads applied in the
neighborhood of the interface, the solution proposed does not require any smallness restrictions on a,
and it may be used in many situation of practical interest.

The results of the present work will be accompanied by the numerical analysis of interfaces of
variable sti�ness in a forthcoming paper (Krasucki and Lenci, 1998). Some preliminary tests have shown
good agreement between the theoretical and numerical solutions.

2. The case of normal forces

Let us initially consider the case of two equal and opposite forces perpendicular to the interface
(Fig. 1(a)) and of magnitude Y. We will take advantage of the symmetry of the problem with respect to
the x-axis. Denoting by v+(x ), u+(x ) and by vÿ(x ), uÿ(x ) the normal and tangential interface
displacements of the upper and lower half-plane, respectively, we have that v+(x )=ÿvÿ(x )=ÿv(x ) and
u+(x )=uÿ(x ). Therefore, the second of the two interface conditions

sy�x� � kN�x��v��x� ÿ vÿ�x��,

txy�x� � kT �x��u��x� ÿ uÿ�x��, �3�
is trivially satis®ed (see also forthcoming Eqs. (5) and (8)). Furthermore, Eq. (3) can be expressed in the
form

sy�x� � ÿk�x�v�x�, �4�
where we have de®ned k(x )=2kN (x ) to simplify the notations.

The solution will be obtained by the superposition principle. In fact, let us initially consider the case
of Fig. 1(a) but assuming continuity of displacements at the interface y = 0, i.e., let us consider an
in®nite plane with two equal and opposite forces. The solution of this problem can be obtained on the
basis of the results of (Love, 1926, art. 148) and, in particular, it gives

v�x, y � 0� � 0,

sy�x, y � 0� � Y

p�1� k�
a

x2 � a2

�
ÿ 1� k� 4a2

x2 � a2

�
,

txy�x, y � 0� � 0, �5�
where k=3ÿ4n in the case of plane strain and k=(3ÿn )/(1+n ) in the case of generalized plane stress.
Furthermore, it is possible to verify that this solution corresponds to vanishing stresses at in®nity.

To consider the e�ects of the weak interface, on the other hand, we will use the complex variable
method (Muskhelishvili, 1953), which assures that the elastic state can be expressed in term of two
analytical functions F(z ) and C(z ), which depend on the complex variable z=x+iy, by means of the
Kolosov's formulae (Muskhelishvili, 1953, section 32)

sx � sy � 2�F�z� � F�z��,
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sy ÿ sx � 2itxy � 2� �zF 0�z� �C�z��,

2m�u� iv� � kj�z� ÿ zj 0�z� ÿ c�z�, �6�
where F=dj/dz and C=dc/dz. Obviously, owing to the symmetry, we can limit the analysis to the
lower half-plane.

In Oÿ let us consider the following complex potentials:

j�z� � ÿ 2m
p�1� k�

�1
ÿ1

f �t�
tÿ z

dt,

c�z� � j�z� ÿ zj 0�z�, �7�
where f(t ) is an unknown bounded continuous function which veri®es f(t )=c+O(vtvÿx), x> 0, for vtv4
1 and with Lipschitz-continuous derivative vanishing at in®nity. Combining Eq. (7) with the classical
Plemelj formulae for half-planes (Muskhelishvili, 1953, sections 68 and 71) and with the formulae for
the derivative of a Cauchy integral (Muskhelishvili, 1953, sections 69 and 71), it is possible to show that

v�x, y � 0� � v�x� � f �x�,

sy�x, y � 0� � sy�x� � ÿ 4m
p�1� k�

�1
ÿ1

f 0�t�
tÿ x

dt,

txy�x, y � 0� � 0, �8�
and that the potentials (7) give sy�x, y� � 0 and txy�x, y� � 0 at in®nity. Eq. (8) guarantees that the
function f(t ) is the vertical displacement at the interface, while the integral should be considered in the
sense of the Cauchy principal value.

The global elastic state is obtained by superposition of the two previously indicated cases. Therefore,
at the interface we have

v�x� � f �x�,

sy�x� � ÿ 4m
p�1� k�

�1
ÿ1

f 0�t�
tÿ x

dt� Y

p�1� k�
a

x2 � a2

�
ÿ 1� k� 4a2

x2 � a2

�
, �9�

and null shear stress. Furthermore, all stresses vanish at in®nity, according to the adopted boundary
conditions. Substituting Eqs. (9) in Eq. (4) we obtain the integro-di�erential equation which governs the
problem:

g
p

�1
ÿ1

f 0�t�
tÿ x

dt � k�x� f �x� � Y

p�1� k�
a

x2 � a2

�
ÿ 1� k� 4a2

x2 � a2

�
, �10�

where g=4m/(1+k ). The solution of Eq. (10) is achieved using the auxiliary complex function

F�z� � 1

2pi

�1
ÿ1

f �t�
tÿ z

dt, �11�

which is separately holomorphic on O+ and Oÿ, but not on the whole plane. The assumptions made on
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f(t ) guarantees that

F 0�z� � 1

2pi

�1
ÿ1

f 0�t�
tÿ z

dt, �12�

while the Plemelj formulae give

1

pi

�1
ÿ1

f 0�t�
tÿ x

dt � F 0 ��x� � F 0 ÿ�x�,

f �x� � F ��x� ÿ F ÿ�x�, �13�
where

F ��x� � lim
y40�

F�x� iy�, F ÿ�x� � lim
y40ÿ

F�x� iy�

and where analogous expressions hold for the derivatives. Combining Eqs. (13) and (10), we obtain�
F 0 ��x� � i

g
k�x�F ��x�

�
ÿ
�
ÿ F 0 ÿ�x� � i

g
k�x�F ÿ�x�

�
� ÿiY

4mp
a

x2 � a2

�
ÿ 1� k� 4a2

x2 � a2

�
: �14�

Let us now suppose that k(x ) is the trace on the x-axis of a function k(z ) which is holomorphic in the
whole plane except possibly for a ®nite number of points zi, i = 1, 2, . . . , N, (not belonging to the
abscissa axis) where it has poles. Then, let us de®ne the complex function

G�z� �

8>>><>>>:
F 0�z� � i

g
k�z�F�z�, z 2 O�,

ÿF 0�z� � i

g
k�z�F�z�, z 2 Oÿ,

�15�

which permits transforming Eq. (14) in the Riemann±Hilbert problem

G ��x� ÿ G ÿ�x� � ÿiY
4mp

a

x2 � a2

�
ÿ 1� k� 4a2

x2 � a2

�
: �16�

The solution of Eq. (16) is (Muskhelishvili, 1953)

G�z� �M�z� � P�z�, �17�
where

M�z� � ÿiY
4mp

�1
ÿ1

1

tÿ z

�
a

t2 � a2

�
ÿ 1� k� 4a2

t2 � a2

��
dt, �18�

and where P(z ) is a holomorphic function on the whole plane except at most for the points zi, i=1, 2,
. . . , N, where it has the same poles as the function �i=g�k�z�F�z�: Furthermore, as F(z ) goes to in®nity
like 1/z the function P(z ) cannot asymptotically grow more than the larger value between k(z )/z and 1/
z 2. This information is su�cient to determine the function P(z ), as we will see in the following
illustrative examples.

The Plemelj formulae give the following expressions
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M��x� � Y

4mp

�
1� k
2

1

x� ia
� ia

�x� ia�2
�
,

Mÿ�x� �M��x�, �19�
which will be used in due course and which have been computed using the results�1

ÿ1

1

tÿ x

1

t2 � a2
dt � ÿp

a

x

x2 � a2
,

�1
ÿ1

1

tÿ x

1

�t2 � a2� dt � ÿ p
2a3

x

x2 � a2
ÿ p

a

x

�x2 � a2�2 : �20�

Taking the boundary values of Eqs. (15) and using Eq. (17) we obtain

F 0 ��x� � i

g
k�x�F ��x� �M��x� � P�x�,

ÿF 0 ÿ�x� � i

g
k�x�F ÿ�x� �Mÿ�x� � P�x�, �21�

which are two ordinary di�erential equations in the two unknowns F+(x ) and Fÿ(x ). The solutions of
Eqs. (21) can be expressed in the form

F ��x� � F �0 eÿib�x� �
�x
0

ei�b�t�ÿb�x���M��t� � P�t�� dt,

F ÿ�x� � F ÿ0 e�ib�x� ÿ
�x
0

eÿi�b�t�ÿb�x���Mÿ�t� � P�t�� dt, �22�

where b�x� � �1=g�� x0 k�t� dt and where F+
0 and Fÿ0 are two complex constants.

In conclusion, we can compute the solution f(x ), which is given by Eq. (13) and after some
computations can be rewrite as

f �x� � A cosb�x� � B sinb�x� � 2

�x
0

cos�b�t� ÿ b�x��P�t� dt� Y

2mp

(
ÿ a2

x2 � a2
� cos

b�x� � Re

"�x
0

�
1� k
2
ÿ k�t�a

g

�
ei�b�t�ÿb�x��

t� ia
dt

#)
,

�23�

where Re[ . ] means the real part of the argument.
Eq. (23) is the general solution of the integro-di�erential Eq. (10) and it holds for every function k(x )

such that it is the trace on the x-axis of a complex function k(z ). Thus, in order to analyze any physical
situation, we have only to choose the proper k(x ) which simulates the actual sti�ness distribution of the
interface and then to use Eq. (23).

Remarks.

1. The fact that f(x ) is, by de®nition, real-valued implies that in Eq. (23) only two of the four real
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constants (real and imaginary parts of F+
0 and Fÿ0 ) are di�erent from zero, which have been denoted

by A and B. The same argument guarantees that P(x ), the trace of P(z ) on the x-axis, must be a
real-valued function.

2. The unknown real constants A and B can be determined by the boundary conditions for x 421.
Indeed, by equilibrium we have f1ÿ1sy (x ) dx=Y and therefore

lim
x421sy�x� � 0:

These relations and Eq. (4) give

lim
x421k�x�f �x� � 0,

which are the required equations for A and B.
3. By de®nition, b(0)=0, so that the constant A assumes the physical interpretation A=f(0), i.e., it is

one half of the interface gap of the displacement at x=0.
4. When k(x ) is even, the problem is symmetric with respect to the y-axis, so that the function f(x ) must

also be even. This implies that B = 0 and that P(x ) must be an odd function. The term in `Y',
instead, automatically gives an even contribute to the f(x ). It is worth mentioning that odd
distributions of k(x ) are physically not admissible, because k cannot be negative.

5. Assuming that k(x ) is an even function and that

lim
x41f �x� � 0

(it is su�cient that k(x ) > 0 for x 4 1), permits some simpli®cations. In this case, in fact, if the
integral�1

0

�
1� k
2
ÿ k�t�a

g

�
eib�t�

t� ia
dt �24�

is a real number, then P(z )=0 and the solution is given by

A � ÿ Y

2mp

(
1�

�1
0

�
1� k
2
ÿ k�t�a

g

�
eib�t�

t� ia
dt

!
,

f �x� � ÿ Y

2mp

(
a2

x2 � a2
� Re

"�1
x

�
1� k
2
ÿ k�t�a

g

�
ei�b�t�ÿb�x��

t� ia
dt

#)
: �25�

2.1. Constant interface sti�ness

In order to illustrate the use of Eq. (23), let us consider in detail some particular cases of practical
interest. The simplest is that with constant interface sti�ness k(x )=k0, which is obviously recovered by
Eq. (23).

This case ful®lls the conditions of remark (5), because k(x ) is even and greater than zero for x41.
Moreover, we have b�x� � k0x=g and the integral
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�1
x

eik0t=g

t� ia
dt � ek0a=gE1��k0a=g��1ÿ ix��, �26�

where E1�z� �
�1
z �eÿt=t� d is the exponential integral of index 1 (Abramowitz and Stegun, 1970, section

5.1) and where x=x/a, shows that�1
0

eik0t=g

t� ia
dt � ek0a=gE1�k0a=g� �27�

is a real number and therefore the solution is given by

A � ÿ Y

2mp

�
1�

�
1� k
2
ÿ k0a

g

�
ek0a=gE1�k0a=g�

�
,

f �x� � ÿ Y

2mp

(
1

1� x2
�
�
1� k
2
ÿ k0a

g

�
Re�e�k0a=g��1ÿix�E1��k0a=g��1ÿ ix���

)
: �28�

In order to illustrate the e�ects of the weak interface with respect to the classical (or strong) one, we can
compare the maximum tensions in each case, which is attained at x = 0. For the weak interface it is
given by sw.i.

max=ÿk0A, while in the case of a strong interface it is given by Eq. (5) calculated in x = 0,
i.e., s s.i.

max=Y(3+k )/(ap(1+k )). The ratio r=sw.i.
max/s

s.i.
max can then be expressed in the form

r � 2l
1�

�
1� k
2
ÿ l

�
elE1�l�

3� k
, �29�

where l=k0a/g. As expected, Eq. (29) is an increasing function which ranges from 0 (when l=0) to 1
(when l 41). The fact that l is always lesser than 1 shows that the weakness of the interface relaxes
the maximum stress and, consequently, it contributes to increasing the strength of the union. For
example, for k=2 and l30.908, the maximum stress is halved.

2.2. Parabolic distribution of sti�ness

In this section we consider the parabolic distribution of sti�ness

k�x� � k1x
2, �30�

which represents the model of a continuously damaged strong interface (Lenci, 1998). Indeed, for large
values of x, the sti�ness is very large and therefore the gap of the displacements is very small, null in the
®rst approximation. In the neighborhood of x = 0, on the other hand, k(x ) vanishes and O+ and Oÿ

have free boundary conditions, which simulates a local detachment due to a defect.
Eq. (30) corresponds to the analytical function k�z� � k1z

2, and the only admissible P(z ) satisfying the
required conditions is P�z� � p1z, where p1 is an unknown real constant. Furthermore, according to the
de®nitions of b(x ), we have b�x� � k1x

3=�3g�:
To calculate the solution of the present case, it is convenient to use the expression
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f �x� � A cosb�x� � 2

�x
0

cos�b�t� ÿ b�x��P�t� dt� Y

2mp

(
1� k
2

�x
0

Re

�
ei�b�t�ÿb�x��

t� ia

�
dt

�
�x
0

Re

"
ia

ei�b�t�ÿb�x��

�t� ia�2
#

dt

)
,

�31�

which is equivalent to Eq. (23) (we have posed B= 0 due to the symmetry, see remark (4)). After some
computations, Eq. (31) can be expressed in the form

f �x� � cosb�x�
�
A� Y

m
f1�x, b� � p1a

2f2�x, b�
�
� sinb�x�

�
Y

m
f3�x, b� � p1a

2f4�x, b�
�
, �32�

where

f1�x, b� � 1� k
12p

 �b�x�
0

coss

s2=3 � b2
ds

s1=3
� b

�b�x�
0

sins

s2=3 � b2
ds

s2=3

!

� b
6p

 
2b
�b�x�
0

coss

�s2=3 � b2�2
ds

s1=3
�
�b�x�
0

b2 ÿ s2=3

�s2=3 � b2�2
sins

s2=3
ds

!
,

f2�x, b� � 2

3b2

�b�x�
0

coss

s1=3
ds,

f3�x, b� � 1� k
12p

 �b�x�
0

sins

s2=3 � b2
ds

s1=3
ÿ b

�b�x�
0

coss

s2=3 � b2
ds

s2=3

!

� b
6p

 
2b
�b�x�
0

sins

�s2=3 � b2�2
ds

s1=3
ÿ
�b�x�
0

b2 ÿ s2=3

�s2=3 � b2�2
coss

s2=3
ds

!
,

f4�x, b� � 2

3b2

�b�x�
0

sins

s1=3
ds, �33�

and where b=a[k1/(3g )]
1/3. To determine the unknowns A and p1 we use the boundary condition

lim
x41k�x�f �x� � 0,

which actually means

lim
x41f �x� � 0:

This gives the two equations (the terms between brackets in Eq. (32), calculated for x 4 1, must
vanish) which provide

p1 � ÿ Y

ma2
f3�1, b�
f4�1, b� ,
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A � ÿY
m
f1�1, b� f4�1, b� ÿ f2�1, b� f3�1, b�

f4�1, b� : �34�

For k=2, the function A(b ) is depicted in Fig. 2, which in particular shows that the interface
displacement at x= 0 is a decreasing function of the sti�ness parameter k1 and of the distance a of the
force application point.

3. The case of tangential forces

The case of two equals and opposite forces parallel to the interface (Fig. 1(b)) is quite similar and can
be solved with the same technique. We superpose the elastic state of two equal forces in an in®nite
body, which gives (Love, 1926, art. 148)

u�x, y � 0� � 0,

sy�x, y � 0� � 0,

txy�x, y � 0� � X

p�1� k�
a

x2 � a2

�
3� kÿ 4a2

x2 � a2

�
, �35�

with that generated by the complex potentials

j�z� � i2m
p�1� k�

�1
ÿ1

f �t�
tÿ z

dt,

c�z� � ÿj�z� ÿ zj 0�z�, �36�
where the unknown f(t ) satis®es the same conditions as the corresponding f(t ) for normal forces. The
formulae (36) assure that

u�x, y � 0� � u�x� � f �x�,

Fig. 2. The function A(b ) for k=2.
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sy�x, y � 0� � 0,

txy�x, y � 0� � txy�x� � ÿ 4m
p�1� k�

�1
ÿ1

f 0�t�
tÿ x

dt: �37�

Adding expressions (36) and (37) yields the global elastic state

u�x� � f �x�,

txy�x� � ÿ 4m
p�k� 1�

�1
ÿ1

f 0�t�
tÿ x

dt� X

p�1� k�
a

x2 � a2

�
3� kÿ 4a2

x2 � a2

�
, �38�

and null interface tension. Furthermore, all stresses vanish at in®nity, according to the adopted
boundary conditions.

In the present case, the interface conditions (3) can be simpli®ed by using the anti-symmetry of the
problem, which guarantees that v+(x )=vÿ(x ) and that u+(x )=ÿuÿ(x)=ÿu(x ), so that (3) assumes
the form

txy�x� � ÿk�x�v�x�, �39�
where k�x� � 2kT�x�: Eqs. (38) and (39) ®nally give the integro-di�erential equation

g
p

�1
ÿ1

f 0�t�
tÿ x

dt � k�x� f �x� � X

p�1� k�
a

x2 � a2

�
3� kÿ 4a2

x2 � a2

�
�40�

which governs the problem.
Eq. (40) is very similar to Eq. (10) (actually, there are only slight di�erences in the term between

round brackets), and can be solved with the same technique illustrated in the previous case.
It is worth remarking that the global equilibrium to the rotation is a consequence of the fact that the

potentials (36) correspond to vanishing rotations at in®nity.

4. Conclusions

The closed-form solution of the elastic problem of two half-planes joined along their common
boundary by a weak interface of nonhomogeneous sti�ness and loaded by two equal and opposite
forces has been obtained. This solution is valid for every position of the symmetric forces and for every
distribution of the interface sti�ness, and can be used in the practical applications where the variability
of the sti�ness is important from a mechanical point of view.

To illustrate the application of the general solution, two examples have been analyzed in the detail.
Initially we have considered the case of constant interface sti�ness, which is obviously a particular case
of the general solution. The interface stress distribution has been determined and it has been compared
with that corresponding to the case of classical interface. The comparison permits to determine the
reduction of the maximum stress due the weakness of the interface and the consequent redistribution of
the stresses. Thus, we may conclude that the weak interface supports the propagation of the stresses
along the interface.

Secondarily, the case of a parabolic distribution of sti�ness k(x )=k1x
2 has been studied. It simulates

the presence of a localized defect in a classical interface, and the general solution is specialized for this
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situation. It is shown how the maximum interface stress depends on the interface parameter k1, which is
proportional to the length of the defect.
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